

ARSET

Applied Remote Sensing Training http://arset.gsfc.nasa.gov

@NASAARSET

Current and Future Satellite Capabilities for Air Quality Monitoring: An Overview

Pawan Gupta

Satellite Remote Sensing of Air Quality: Data, Tools, and Applications

Tuesday, May 23, 2017 – Friday, May 26, 2017 Indian Institute of Tropical Meteorology, Pune, India

Learning Objectives

By the end of this presentation, you will be able to:

- describe existing satellite capabilities for global air quality monitoring
- identify upcoming and future satellite missions for air quality monitoring

Motivation: Tiny, but Potent

Pollution Sources

Atmospheric aerosols are highly variable in space and time

Traditional Air Quality Monitoring

Air Pollution Monitoring

Global Burden of Air Pollution

- Air pollution was responsible for 5.5 million deaths in 2013
- Satellite data can help quantify the impact on human health

Image Credit: http://thelancet.com/gbd/2013

UN Sustainable Development Goals (SDGs)

Transforming Our World: The 2030 Agenda for Sustainable Development

Text adapted from "<u>Transforming our world: the 2030 Agenda for Sustainable Development</u>"

- A plan of action for people, planet, and prosperity
- All countries and all stakeholders, acting in collaborative partnership, will implement this plan
- 17 SDGs and 169 targets under this agenda
- Balance the three dimensions of sustainable development:
 - –economic, social, and environmental

Global Status of PM_{2.5} Monitoring

- Many countries do not have PM_{2.5} mass measurements
- Spatial distribution of air pollution from existing ground network does not support high population density
- 2,400 out of 3,100 counties in the U.S. (31% of the total population) have no PM monitoring
- Surface measurements are not cost effective
- How about using remote sensing satellites?

Density

"A picture is worth a thousand words"

A satellite picture is worth a millions of data

NASA Earth Science

Current and Upcoming Missions

What can we learn from true color imagery?

MODIS Terra Image, April 19, 2013

Aerosols from Satellites

Aerosol Optical Thickness (MODIS Aqua)

Several satellites provide state-of-the-art aerosol measurements globally, on a daily basis

AERONET

http://aeronet.gsfc.nasa.gov/

AERONET measurements of aerosol optical depth are considered ground truth and are used to validate satellite aerosol retrievals

Satellite vs. Ground Observation

Global Status of PM_{2.5} Monitoring: Future View

Application of Satellite Observations: Bushfires in Sydney, Australia

Air Quality Trends Birmingham, Alabama

- A decreasing trend in annual PM_{2.5} was noted with the almost 22% reduction in PM_{2.5} mass concentration observed in 2006 compared to 2002
- MODIS-Terra Collection 5, Level 2, 10 km² AOTs for 2000-2006

Source: Gupta and Christopher, 2007

Measurements: Surface vs. Satellite

Fire Detection and Monitoring

Long Range Transport

Dust from Mongolian Deserts Reaches the U.S.

Smoke Travels Around the World in 11 Days

Model-Satellite Intercomparison

Vertical Profiles of Aerosols

CALIPSO: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CALIPSO Browse Images

http://www-calipso.larc.nasa.gov/products/lidar/browse

images/production/

Example of CALIPSO Data

Major Saharan Dust Transport Event: Aug 17-28

NO₂ Trends Over the United States

OMI Detects NO₂ Increases from ONG Activities 2005-2014

North Dakota

Suomi NPP VIIRS Lights at Night

Texas

Breaking the Temporal Barrier

The beginning of a new era in satellite remote sensing of air quality

Source: NOAA NESDIS

GOES-R

- Launched: November, 2016
- Advance Baseline Imager (ABI): 16 Spectral Bands
- Very High Temporal Resolution: 15 min 30 seconds

GOES-16 Loop: Smoke Over the Southeast U.S.

Image: NOAA CoRP, STAR: http://rammb.cira.colostate.edu/ramsdis/online/loop of the day/

HIMAWARI-8 Loop: Fog and Smog over India

Image: NOAA CoRP, STAR: http://rammb.cira.colostate.edu/ramsdis/online/loop of the day/

Upcoming Instruments

European Space Agency TROPOMI

TROPOMI Highlights

- Launch 2017
- Observes whole globe
- Sub-urban spatial resolution (7 km x 7 km)
- 1x/day: NO₂, ozone (0-2 km vertical), aerosol, clouds, formaldehyde, glyoxal, SO₂, CO, methane

Measuring on Sub-Urban

Level

TROPOMI: Impact of Resolution

OMI (now)

TROMPOMI (Simulated data)

Global pollution monitoring constellation (2018-2020)

Policy-relevant science and environmental services enabled by common observations

- Improved emissions, at common confidence levels, over industrialized Northern Hemisphere
- Improved air quality forecasts and assimilation systems
- Improved assessment, e.g., observations to support United Nations Convention on Long Range
 Transboundary Air Pollution

TEMPO

- Geostationary over North America
- High Temporal Resolution–1 hr
- High Spatial Resolution
 -2.2 x 4.7 km
- Spectral Range
 - -290-740nm
- Data Products:
 - -O₃, NO₂, C₂H₂O₂, aerosols, cloud parameters, & UVB radiation
- Expected Launch: 2021

Multi-Angle Imager for Aerosols

- Mission Goal: Assess linkages between different airborne particulate matter types and adverse birth outcomes, cardiovascular and respiratory disease, and premature deaths
- Sun synchronous orbit
- Spatial Resolution: 230 m
- Large Swath Width: 600 km
- Expected Launch: 2021

Optical probe

Dual photoelastic modulator

Questions & Discussion

- Can satellites help fill some of the data gaps?
- What are advantages of polar orbiting satellites as compared to geostationary satellites?

